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Introduction

Tubulointerstitial inflammation and fibrosis play impor-
tant roles in the progression of chronic kidney disease 
(CKD) and are closely associated with the prognosis of kid-
ney diseases[1–3].  Transforming growth factor–β1 (TGF-β1) 
is one of the most important cytokines that participate in 
tubulointerstitial inflammation and fibrosis.  It has been dem-
onstrated that chemokines, including monocyte chemoat-
tractant protein-1 (MCP-1) and interleukin-8 (IL-8), are 
closely related to tubulointerstitial lesions[4–7].  

Peroxisome proliferator-activated receptor-γ (PPAR-γ), 
a member of the ligand-activated transcription factor super-
family, is expressed in many organs, including the kidney[8, 9].  
In our previous study, we demonstrated that PPAR-γ could 
counteract the profibrogenic effects of TGF-β1 in the 
kidney[10, 11].  Furthermore, it has been found that activation 
of PPAR-γ has anti-inflammatory effects in inflammatory 

bowel disease, arthritis and multiple sclerosis[12–16].  However, 
the anti-inflammatory effects of PPAR-γ in kidney diseases 
remain unclear.  In the current study, we aimed to investigate 
the anti-inflammatory effects of PPAR-γ in kidney diseases 
by examining the effects of 15d-PGJ2 (a natural ligand of 
PPAR-γ) and troglitazone (TGL) on TGF-β1−induced 
chemokine expression in renal tubular epithelial cells.

Materials and methods

Cell culture  Human proximal tubular cells (HK-2, 
CRL-2190) were purchased from ATCC and grown in 
keratinocyte serum-free media (KSFM, Invitrogen) supple-
mented with bovine pituitary extract (BPE, Invitrogen) and 
epidermal growth factor (EGF, Invitrogen).  The cells were 
cultured in a 37 °C incubator with 5% CO2 and passaged at 
80% confluence using 0.05% trypsin-0.02% EDTA (Invitro-
gen).

To investigate the fibrogenic effect of TGF-β1 on the 
HK-2 cells, the cells were seeded into 6-well culture dishes 
and incubated with KSFM without BPE and EGF for 24 h to 
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arrest and synchronize cell growth.  After the 24 h, cells were 
treated with TGF-β1 (R&D Systems, Minneapolis, MN) at 
different concentrations (0, 0.5, 1, 2, 5, and 10 ng/mL) for 24 
h or treated with 5 ng/mL TGF-β1 for different time inter-
vals (0, 2, 6, 12, 24, 36, and 48 h).  Cells were then harvested 
for further experimentation.

RT-PCR and real-time RT-PCR  Total RNA was iso-
lated from HK-2 cells using the TRIzol reagent (Invitrogen) 
according to the manufacturer’s protocol.  The RNA was 
eluted with RNase-free water.  Reverse transcription was 
performed using a standard reagent (Promega) according to 
the manufacturer’s protocols.  Real-time PCR amplification 
was performed using the SYBR Green master mix (Toyobo, 
Japan) and the Opticon 3 Real-time PCR Detection System 
(Bio-rad).  Cycling conditions were 94 °C for 5 min followed 
by 44 cycles of 94 °C for 15 s and 60 °C for 1 min.  A final 
extension at 72 °C for 10 min was performed after the cycles 
were completed.  Primers for amplifying GAPDH, MCP-1 
and IL-8 were designed using Primer software and validated 
for specificity.  Primer sequences are summarized in Table 1.  
Relative amounts of mRNA were normalized to GAPDH 
levels and calculated using the delta-delta method from the 
threshold cycle numbers.  Levels in the control experiments 
were set to 1, and all the other values are expressed as mul-
tiples thereof.

Enzyme-linked immunosorbent assay  Commercial 
ELISA kits (Biosource, USA) were used to detect the level of 
MCP-1 and IL-8 in the supernatant of HK-2 cells according 
to the manufacturer’s protocol.  

Statistical analysis  All values are expressed as the 
means±SD.  Statistical analyses were performed using SPSS 
for Windows 11.0 (SPSS, Inc, Chicago, IL, USA).  Statistical 
analyses between two groups were assessed by t-test.  Sta-
tistical analyses among groups were assessed by ANOVA.  
P-values <0.05 were considered to be statistically significant.

Results

Dose- and time-dependent effects of TGF-β1 on 

MCP-1 and IL-8 mRNA in HK-2 cells  Untreated HK-2 
cells expressed a basal level of both MCP-1 and IL-8 mRNA.  
When HK-2 cells were treated with different concentrations 
of TGF-β1 for 24 h, the level of MCP-1 mRNA increased 
above basal levels with 2 ng/mL, peaked with 5 ng/mL and 
decreased with 10 ng/mL of TGF-β1, which corresponded 
to 1.64-, 2.65-, and 1.95-fold increases in MCP-1 mRNA 
levels, respectively (Figure 1A).  When HK-2 cells were 
treated with 5 ng/mL of TGF-β1 for different time periods, 
MCP-1 mRNA expression increased at 6 h, peaked at 12 h 
and decreased after 24 h.  No significant difference in MCP-1 
expression was found at 36 h between the TGF-β1-treated 
and control groups (P>0.05, Figure 1B).

When HK-2 cells were treated with different concentra-
tions of TGF-β1 for 24 h, IL-8 mRNA levels increased with 1 
ng/mL, peaked with 5 ng/mL and decreased with 10 ng/mL 
of TGF-β1 (Figure 2A).  Treatment of the HK-2 cells with 5 
ng/mL of TGF-β1 increased IL-8 mRNA levels by 2.64 fold 
at 12 h (P<0.01) and by 2.19 fold at 48 h (P<0.01) (Figure 
2B).

Effects of TGF-β1 on MCP-1 and IL-8 protein lev-
els in HK-2 supernatants  After 12 h of treatment with 
TGF-β1 (5 ng/mL), the levels of MCP-1 in cell supernatants 
increased from 10.68 pg/mL to 43.39 pg/mL at 12 h, to 
185.91 pg/mL at 36 h, and decreased to 148.31 pg/mL at 
48 h (Figure 3A).  TGF-β1 (5 ng/mL) also upregulated the 
level of IL-8 protein in supernatants at 12 h (Figure 3B).

 Inhibitory effects of TGL and 15d-PGJ2 on TGF-
β1-induced MCP-1 and IL-8 mRNA expression in HK-2 
cells  Treatment of HK-2 cells with 5 ng/mL of TGF-β1 for 
24 h significantly increased the MCP-1 and IL-8 mRNA lev-
els.  Treatment of HK-2 cells with 1 μmol/L or 2.5 μmol/L 
TGL for 24 h significantly decreased the TGF-β1-induced 
MCP-1 mRNA level (P<0.05, Figure 4A).  Treatment of 
HK-2 cells with 2.5 μmol/L of TGL for 24 h decreased TGF-
β1-induced IL-8 mRNA levels from 2.55-fold to 1.49-fold 
(P<0.05, Figure 4B).

Treatment of HK-2 cells with 2.5 μmol/L or 5 μmol/L of 
15d-PGJ2 for 24 h decreased the TGF-β1-induced MCP-1 

Table 1.   The primers for the real-time PCR.

                Gene	                                                                      Primer sequence	                                                                     Product length (bp)        Tm (ºC)
 
	 GAPDH	 Forward  	 5'- CAGGGCTGCTTTTAACTCTGGTAA -3'	 101	 60
		  Reverse  	 5'- GGGTGGAATCATATTGGAACATGT-3'		
	 MCP-1	 Forward  	 5'-CAGCCAGATGCAATCAATGC-3'	 198	 60
		  Reverse  	 5'-GTGGTCCATGGAATCCTGAA-3'		
	 IL-8	 Forward  	 5'-GAATTGAATGGGTTTGCTAGA-3'	 229	 60
		  Reverse  	 5'-CACTGTGAGGTAAGATGGTGG-3'
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mRNA level (P<0.05, Figure 4C).  Treatment of HK-2 cells 
with 1, 2.5, or 5 μmol/L of 15d-PGJ2 for 48 h decreased the 
TGF-β1-induced IL-8 mRNA level (P<0.05, Figure 4D).

Inhibitory effects of TGL and 15d-PGJ2 on level 
of TGF-β1-induced MCP-1 and IL -8 in supernatant  
Treatment of HK-2 cells with 2.5 μmol/L of TGL or 2.5 

or 5 μmol/L of 15d-PGJ2 for 24 h significantly decreased 
the levels of TGF-β1-induced MCP-1 in the supernatant 
(P<0.05).  Furthermore, a significant difference in the 
level of inhibition was observed between the groups of 
HK-2 cells treated with the 5 and 2.5 μmol/L doses of 15d-

Figure 1.  The effects of TGF-β1 on MCP-1 mRNA expression in 
HK-2 cells.  The effects of different dosages of TGF-β1 (0.5, 1, 2, 5, and 
10 ng/mL) on MCP-1 mRNA expression.  (B) The effects of different 
durations of treatment with TGF-β1 (2, 6, 12, 24, 36, 48 h) on MCP-1 
mRNA expression.  bP<0.05 vs TGF-β1 control group.

Figure 2.  The effects of TGF-β1 on IL-8 mRNA expression in HK-2 
cells.  (A) The effects of different dosages of TGF-β1 (0.5, 1, 2, 5, and 
10 ng/mL) on IL-8 mRNA expression.  (B) The effects of different 
durations of treatment with TGF-β1 (6, 12, 24, 36, 48 h) on IL-8 
mRNA expression.  bP<0.05 vs TGF-β1 control group.     

Figure 3.  The level of MCP-1 and IL-8 after TGF-β1 treatment.  (A) The level of MCP-1 in the supernatant after different durations of TGF-β1 (5 
ng/mL) treatment.  (B) The level of IL-8 in the supernatant after different durations of TGF-β1 (5 ng/mL) treatment.  bP<0.05 vs TGF-β1 control 
group.



110

 www.nature.com/apsWang WM et al

PGJ2 (P<0.05).  Similarly, treatment of HK-2 cells with 
2.5 μmol/L of TGL or with 5 μmol/L of 15d-PGJ2 for 24 h 
significantly decreased the levels of TGF-β1-induced IL-8 
protein in the supernatant (P<0.01) (Table 2 and Table 3).

Discussion

Tubular epithelial cells play an important role in tubu-

lointerstitial fibrosis by secreting cytokines and extra-cellular 
matrix.  TGF-β1, which has a wide spectrum of biological 
functions, is one of the most important cytokines in this 
process.  Recent studies suggest that chemokines, such as 
MCP-1 and IL-8, are closely associated with kidney diseases, 
and tubular epithelial cells are the predominant secretors 
of these chemokines[17, 18].  MCP-1 and IL-8 cause tubu-
lointerstitial lesions by recruiting target cells, which include 

Table 3.  The effects of TGL and 15d-PGJ2 on IL-8 level induced 
by TGF-β1.  n=3 independent experiments.  Mean±SD.  cP<0.01 vs 
control; fP<0.01 vs TGF-β1 induction group.

                           Groups	                                              Concentration (pg/mL)
 
	  Control	 2423.78±887.71
	 TGF-β1	 3544.42±721.05c

	 TGF-β1+15d-PGJ2 (2.5 μmol/L)	 2762.36±817.99
	 TGF-β1+15d-PGJ2 (5 μmol/L)	 1982.54±595.06f

	 TGF-β1+TGL (2.5 μmol/L)	 2042.97±827.34f

	 15d-PGJ2 (5 μmol/L)	 1775.16±449.96
	 TGL (2.5 μmol/L)	 1847.69±604.33

All experiments were performed in triplicate, and each sample was 
tested by two ELISA wells.

Table 2.   The effects of TGL and 15d-PGJ2 on MCP-1 level induced 
by TGF-β1.  n=3 independent experiments.  Mean±SD.  cP<0.01 vs 
control; fP<0.01 vs TGF-β1 induction group.

                             Groups	                          Concentration (pg/mL)
 
	 Control	 21.36 ± 6.51
	 TGF-β1	 56.17±14.31c

	 TGF-β1+15d-PGJ2 (2.5 μmol/L) 	 29.30±11.72f

	 TGF-β1+15d-PGJ2 (5 μmol/L)	 14.09±4.50f

	 TGF-β1+TGL (2.5 μmol/L ) 	 22.82±12.39f

	 15d-PGJ2 (5 μmol/L )	 15.08±4.38
	 TGL (2.5 μmol/L)	 12.57±4.60

All experiments were performed in triplicate, and each sample was 
tested by two ELISA wells.

Figure 4.  The effect of TGL and 15d-PGJ2 on TGF-β1-induced MCP-1 and IL-8 mRNA expression in HK-2 cells (24 h).  The mRNA level of 
MCP-1 (A) and IL-8 (B) in HK-2 cells after different concentrations of TGL treatment.  The mRNA level of MCP-1(C) and IL-8 (D) in HK-2 cells 
after different concentrations of 15d-PGJ2 treatment.  n=3.  Mean±SD.  cP<0.01 vs control.  eP<0.05 vs TGF-β1 induction group. 
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macrophages/monocytes, T cells, neutrophils, eosinophils 
and basophils, into the tubulointerstitium, where the target 
cells secrete cytokines, including TGF-β1 and TNF-α[19–22].  
However, recent studies on TGF-β1-induced chemokine 
secretion by tubular epithelial cells had contradictory 
results.  Gerritsma JS and colleagues demonstrated that 
TGF-β1 increased the level of IL-8, but decreased the level 
of MCP-1[23].  However, in a study published by Qi et al, 
IL-8 and MCP-1 expression was upregulated after TGF-β1 
treatment[24].

In our previous studies, we demonstrated that TGF-β1 
increased ECM synthesis in renal interstitial fibroblasts[25].  
However, it is not clear whether TGF-β1 recruits inflamma-
tory cells and leads to their infiltration into the tubulointer-
stitium by upregulating cytokine secretion.  In the current 
study, we investigated the expression of MCP-1 and IL-8 
in HK-2 cells after stimulation with TGF-β1.  Our results 
showed that HK-2 cells expressed basal levels of MCP-1 and 
IL-8, which agrees with results from previously published 
studies[26, 27].  In this study, we demonstrated that TGF-β1 
upregulated the expression of MCP-1 and IL-8 in HK-2 cells.  
Our results from this study are consistent with our previous 
studies that demonstrated that TGF-β1 had proinflammatory 
and profibrogenic effects on HK-2 cells.  Our results are also 
consistent with the study, for example, published by Qi and 
colleagues[24].  Recent studies suggest that increased expres-
sion of MCP-1 is found in several renal diseases[20, 21], sup-
porting the concept that TGF-β1 upregulates expression of 
MCP-1 in tubular epithelia.  In the studies published by Ger-
ritsma et al and Qi et al[23, 24], the expression of IL-8 in tubular 
epithelial cells was upregulated after 48 h or 72 h of TGF-β1 
stimulation.  Their results are similar to our findings, suggest-
ing that secretion of MCP-1 and IL-8 by tubular epithelial 
cells plays an important role in tubulointerstitial fibrosis and 
lesion formation[24].

PPAR-γ is a member of the ligand-activated transcrip-
tion factor superfamily, which participates in a wide range 
of biological activities, including cell differentiation, fat 
metabolism, glucose metabolism, immune response regula-
tion, inflammation, cell apoptosis and tumorigenesis[28, 29].  
PPAR-γ had some anti-inflammatory effects on inflamma-
tory bowel disease and rheumatoid arthritis[30, 31].  It amelio-
rates the inflammatory cell infiltration and downregulates 
the proinflammatory cytokine expression in animal models 
of diabetic nephropathy and lupus nephropathy as well as in 
mesangial cells, fibroblasts and tubular epithelial cells[32, 33].  
Li and colleagues demonstrated that eicosapentaenoic acid 
(EPA) and docosahexaenoic acid (DHA) could down-
regulate LPS-induced MCP-1 expression via the PPAR-γ 

pathway[34].  In this study, we demonstrated that treatment 
with either 15d-PGJ2 or TGL counteracts the TGF-β1-
induced MCP-1 and IL-8 expression.  These findings suggest 
that PPAR-γ has an inhibitory effect on MCP-1 expression.  
Our results are similar to those reported by Zafiriou et al, 
who demonstrated that pioglitazone downregulates TGF-
β1-induced MCP-1 expression in OK cells and that such 
effects did not depend on NF-κB activity[35].  However, our 
results are different from those of the study reported by Fu 
et al, who found that 15d-PGJ2 upregulated the expression 
of IL-8 in macrophages[31].  Our results suggest that differ-
ent mechanisms of PPAR-γ may occur in different cell types.  
To date, the molecular details of the antagonizing effects 
of PPAR-γ on TGF-β1-induced proinflammatory cytokine 
expression are unclear.  In our previous study[25], we dem-
onstrated that PPAR-γ could counteract the profibrogenic 
effects of TGF-β1 by downregulating the phosphorylation 
of Smad 2 and Smad 3.  Therefore, the anti-inflammatory 
effects of PPAR-γ on TGF-β1-induced inflammation might 
target Smad signaling.  However, further study is needed to 
fully elucidate the detailed mechanism by which this process 
occurs.  

We demonstrated that TGF-β1 induced the expression 
of chemokines in tubular epithelial cells and inflammatory 
cells.  Inflammatory cells participate in tubulointerstitial 
lesions by infiltrating into the tubulointerstitium mediated 
by the chemokine receptors on their surface.  Both 15d-PGJ2 
and TGL had inhibitory effects on MCP-1 and IL-8 expres-
sion.  Our studies suggest that inhibiting TGF-β1−induced 
chemokine expression might have therapeutic effects on 
tubulointerstitial lesions and thus could potentially be used 
as a regimen for treating chronic kidney disease.
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